Herein, we have reported a dynamic boronic ester mediated guanosine (G) based G-quadruplex hydrogel as an ideal template for in situ and 'green chemical' approach for the synthesis and stabilization of Pt NPs. 11 B NMR and FT-IR spectra reveal the formation of dynamic boronate ester bonds. The TEM images of the G-quadruplex hydrogel reveal entangled three-dimensional (3D) crosslink nanofibrillar networks with average diameter of 20 nm. Similarly, AFM images of the hydrogel show dense nanofibrillar assembly with an average height of 6 nm. The in situ generated Pt NPs have been characterized using TEM and XPS techniques. The average size of the nanofiber supported Pt NPs is 1.5 nm. The Pt NPs embedded G-quadruplex hydrogel shows better mechanical stiffness than the native hydrogel as the storage modulus (G') increases to 2250 Pa from 317.08 Pa after the in situ generation of Pt NPs. Furthermore, G-quadruplex hydrogel supported Pt NPs have been used as a catalytic system for hydrogenation reaction of different aromatic nitro compounds in aqueous medium. The use of G-quadruplex molecular system as a template for the synthesis and stabilization of metal NPs would be an interesting area of research.
Read full abstract