Abstract

Phenylboronic acid-polymers (PBA-polymers) have attracted tremendous attention as potential stimuli-responsive materials with applications in drug-delivery depots, scaffolds for tissue engineering, HIV barriers, and biomolecule-detecting/sensing platforms. The unique aspect of PBA-polymers is their interactions with diols, which result in reversible, covalent bond formation. This very nature of reversible bonding between boronic acids and diols has been fundamental to their applications in the biomedical area. We have searched peer-reviewed articles including reviews from Scopus, PubMed, and Google Scholar with a focus on the 1) chemistry of PBA, 2) synthesis of PBA-polymers, and 3) their biomedical applications. We have summarized approximately 179 papers in this review. Most of the applications described in this review are focused on the unique ability of PBA molecules to interact with diol molecules and the dynamic nature of the resulting boronate esters. The strong sensitivity of boronate ester groups towards the surrounding pH also makes these molecules stimuli-responsive. In addition, we also discuss how the re-arrangement of the dynamic boronate ester bonds renders PBA-based materials with other unique features such as self-healing and shear thinning. The presence of PBA in the polymer chain can render it with diverse functions/ relativities without changing their intrinsic properties. In this review, we discuss the development of PBA polymers with diverse functions and their biomedical applications with a specific focus on the dynamic nature of boronate ester groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.