The present work aims at investigating the effect of applying different dyeing sequences on the imparted functional properties to partially hydrolysed and bleached PET and PET/CO fabrics loaded with TiO2, ZnO and SnO2 nanoparticles (NPs). The so obtained dyed fabrics have been characterized using SEM, EDX and FT-IR analytical techniques. The obtained results revealed that, an interaction has taken place between COOH groups created on dyed polyester fabrics and each of the applied NPs. Moreover, the effect of loading and sequence of dyeing wet operation on the functional performances of polyester fabrics was evaluated by estimating its antimicrobial efficacy and ultraviolet protection properties. The antimicrobial activity was tested against B. mycoides, E. coli and C. albicans. It has been found that, loading polyester fabrics with TiO2 and ZnO during dyeing process using exhaustion or after dyeing using pad-dry-cure methods paves the way for imparting outstanding antimicrobial activity even after five washing cycles. Moreover, the obtained results have also reviled that, the UPF values are dependent on the sequences of the loading of abovementioed NPs during or after dyeing wet operation.
Read full abstract