Anaerobic heat-production rates of two co-occurring species of estuarine bivalves (a clam and a mussel) were measured with double-twin heat-flow calorimeters, one at 20°C, the other at 30°C. There is no significant difference between the two species in metabolic rates. There is evidence of initial aerobic metabolism in some individuals, as shown by high initial rates exponentially decreasing with time, while others had fluctuating but stable average metabolic activity from the beginning. During aerobic as well as anaerobic metabolism, the bivalves showed rhythmic periods of activity and quiescence. The two species differed in their rhythmic pattern of active and resting metabolism. In the case ofPolymesoda caroliniana, periods of resting metabolism tend to be longer and periods of active metabolism shorter at 30°C than at 20°C. There is a similarity between thermograms ofModiolus demissus at 20° and 30°C. Following acute temperature changes from 5° to 20° and 30°C, the bivalves showed stable metabolic rates in a matter of hours. The stabilized average rates [pooled averages for both species of 1.34×10-4 (standard error of the mean=0.17×10-4) W g-1 dry weight of tissue at 20°C and 2.10×10-4 (SE=0.20×10-4) W g-1 at 30°C] signify a temperature coefficient (Q10) of 1.56 between 20° and 30°C, or partial temperature acclimation. Subtracting heat production as a result of physical activity, i.e., considering only resting metabolism, the corresponding means and standard errors of the means are 1.24×10-4 and 0.14×10-4 W g-1 at 20°C and 1.91×10-4 and 0.077×10-4 W g-1 at 30°C. Anaerobic heat production rate at 20°C is proportional to body size (r=0.84, 9 degrees of freedom, DF). ForM. demissus, measured anaerobic heat production is on the order of 7.5% of the level of aerobic respiration reported in the literature.
Read full abstract