This work provides mathematical and numerical analyses for a spring–mass system, in which Signorini–type contact conditions and Coulomb’s friction law with thermal effects are taken into consideration. The motion of a mass attached to a viscoelastic (Kelvin–Voigt type) nonlinear spring is described by a generalized Duffing equation. Signorini contact conditions are understood as extended complementarity conditions (CCs), where convolution is incorporated, allowing to consider thermal aspects of an obstacle. We prove the existence of global weak solutions for the highly nonlinear differential equation system with all the conditions, based on the regularized differential equation and the normal compliance condition with the standard mollifier. In addition, we investigate what side effects produce higher singularities of contact forces in dynamic contact problems, which is also supported by numerical evidences. Numerical schemes are proposed and then several groups of data are selected for the display of our numerical simulations.
Read full abstract