Abstract

We present a model and experimental realization of coplanar superconducting resonators terminated by a shunting kinetic inductance bridge made of ultra-thin Al films. The fabrication process that we propose allows us to create very homogeneous films, which makes them suitable for many applications in quantum devices. Due to the specific properties of the films, the resonators exhibit a Duffing oscillator behavior resulting in bifurcations and interactions between different power sources, which was previously observed in similar systems. Moreover, since the nonlinearity of such a system is concentrated at the bridge, while the wave propagates in a linear environment, it is possible to propose a simple model that accurately describes its behavior. We show that, when resonators are operated within a notch-port architecture, our model has a closed-form solution for the transmission coefficient and allows one to accurately extract parameters of the system, including the kinetic inductance of the bridge and its depairing current. Potential applications of such systems include tunable resonators, photon detectors, bifurcation and parametric amplifiers, as well as a measurement device for studying the properties of thin films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call