Abstract
Particle irradiation offers a route to incorporating additional flux pinning centres in high-temperature superconducting wires with minimal disruption to the pre-existing defect landscape, thereby further enhancing the critical current in a controllable fashion. This work is a comprehensive study of the fluence-dependence of proton irradiation using protons of two energies, 2.5 and 1.2 MeV, in enhancing the critical current performance in commercially available (Y,Dy)Ba2Cu3O7−δ coated conductors. A sequence of fluences covering the range from 1 × 1015 to 5 × 1016 protons cm−2 was used in the irradiation process to study the flux pinning in this material. The resulting samples were characterized using field angle-dependent transport critical current measurements over a range of temperatures from 20 K to 77.5 K and magnetic fields up to 8 T, thus covering the wide range of operating conditions. Optimisation of fluence for highest performance at each energy resulted in a similar level of isotropic critical current enhancement, a factor 2.6 improvement at 20 K and 8 T, but with a significant difference in the optimised fluence in each case. The lower energy 1.2 MeV protons produce this enhancement at a three-fold lower fluence compared to 2.5 MeV protons, a result of their higher electronic energy loss. The different samples are analysed within the framework of the maximum entropy model, helping to understand the vortex dynamics before and after irradiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.