Abstract

We describe a novel class of devices based on the nonlinearity of the kinetic inductance of a superconducting thin film. By placing a current-dependent inductance in a microwave resonator, small currents can be measured through their effect on the resonator’s frequency. By using a high-resistivity material for the film and nanowires as kinetic inductors, we can achieve a large coefficient of nonlinearity to improve device sensitivity. We demonstrate a current sensitivity of 8 pA/√Hz, making this device useful for transition-edge sensor (TES) readout and other cutting-edge applications. An advantage of these devices is their natural ability to be multiplexed in the frequency domain, enabling large detector arrays for TES-based instruments. A traveling-wave version of the device, consisting of a thin-film microwave transmission line, is also sensitive to small currents as they change the phase length of the line due to their effect on its inductance. We demonstrate a current sensitivity of 5 pA/√Hz for this version of the device, making it also suitable for TES readout as well as other current-detection applications. It has the advantage of multi-gigahertz bandwidth and greater dynamic range, offering a different approach to the resonator version of the device. Finally, we also demonstrate a transmission-line resonator version of the device that combines some of the advantages of the nanowire resonator and the traveling-wave device. This version of the device has high dynamic range but can also be easily multiplexed in the frequency domain. A lumped-element resonator similar to the first device can be placed in a loop configuration to make it sensitive to magnetic fields. We demonstrate an example of such a device whose sensitivity could ultimately reach levels similar to those of state-of-the-art DC SQUIDs, making it potentially useful for many magnetometry applications given its ease of multiplexing. Finally, a similar microwave resonator is shown to exhibit parametric gain of up to 29 dB in the presence of a strong pump tone. The noise performance of this parametric amplifier approaches the quantum limit, making it useful for applications in quantum information and metrology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call