Agricultural practices have historically dominated disturbance on North American grasslands. Disturbances from oil and gas have become increasingly common and problematic for grassland conservation. With growing demand for oil and gas, industry is actively implementing minimal disturbance techniques during construction to reduce impacts on grasslands. This study aimed to determine impacts of a large-diameter pipeline right of way (ROW) on dry mixed-grass prairie to determine if and how far these impacts extended beyond the ROW and the effect of time on grassland recovery on and off ROW. Soil and vegetation on the ROW and on transects extending 300 m on either side of the ROW were assessed over a 10-yr period, starting the yr of construction, at six sites along a pipeline route in southern Alberta, Canada. There were significant impacts to soil and vegetation on the ROW and within 5 m of the ROW in the first yr. The trench was most impacted, followed by work and storage areas. Within 2 yr, soil and plant communities were on a trajectory toward reference prairie conditions. Ten yr following construction, only soil pH and bare ground were greater, and litter was less, on the trench than on work and storage areas, and relative to reference prairie. While native grass richness, dominance, and cover were similar on and off ROW, abundance of some native forb species was less on ROW. Non-native species cover was < 2% in all yr and locations. Although ruderal weed species were abundant on ROW the yr following construction, they disappeared by the following yr. Use of minimal-disturbance construction techniques reduced the size and intensity of the disturbance footprint, allowing for even sensitive arid habitat to recover within a short period of time. Similar approaches to other grassland disturbances can increase ecosystem resiliency.
Read full abstract