Metal organic frameworks (MOFs) are porous crystalline materials of one-, two-, or three-dimensional networks constructed from metal ions/clusters and multidentate organic linkers via coordination bonding, which are emerging as an important group of materials for energy storage, CO2 adsorption, alkane/alkene separation, and catalysis. To introduce newcomers in chemical engineering discipline to the rapidly expanding MOF research works, this review presents a brief introduction to the currently available MOFs synthesis methods. Starting from the conventional solvothermal/hydrothermal synthesis, microwave-assisted, sonochemical, electrochemical, mechanochemical, ionothermal, drygel conversion, and microfluidic synthesis methods will be presented. Examples will be limited to those representative MOF structures that can be synthesized using common organic ligands of 1,4-benzenedicarboxylic acid (and its functionalized forms) and 1,3,5-benzenetricarboxylic acid, in conjunction with metal nodes of Zn2+, Cu2+, Cr3+, Al3+, Fe3+ and Zr4+. Synthesis of widely-investigated zeolitic imidazolate framework (ZIF) structure, ZIF-8 is also included.
Read full abstract