Abstract

On the occasion of Professor Takashi Tatsumi’s retirement and winning of the Alwin Mittasch Prize, some of his main achievements in zeolite catalysis are summarized, with a focus on the design, synthesis, and catalytic application of new titanosilicate catalysts. He and his co-workers succeeded in the direct synthesis of the MWW-type titanosilicate, Ti-MWW, by employing boric acid in the synthesis and thereafter developed a dry gel conversion method for boron-reduced Ti-MWW as well as a secondary isomorphous substitution route for boron-free Ti-MWW molecular sieves. In particular, the postsynthetic conversion involved a reversible structure interchange between three-dimensional silicalite and a two-dimensional layered precursor. Taking advantage of the structural diversity of the layered MWW zeolite precursor, phase-delaminated Ti-MMW and interlayer expanded Ti-MWW were also prepared. Using hydrogen peroxide as an oxidant, the Ti-MWW/H2O2 system was highly efficient for liquid-phase oxidation of a variety of substrates, particularly the epoxidation of alkenes and ammoximation of ketones. Some of the Ti-MWW-catalyzed reactions have already led to or are becoming practical catalytic technologies in industrial practice. Several other recent achievements in the synthesis and catalytic applications of other titanosilicates, zeolitic hydrid materials, and solid acid zeolite catalysts are also briefly summarized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call