The search for drug nanocarriers with stimuli-responsive properties and high payloads for targeted drug delivery and precision medicine is currently a focal point of biomedical research, but this endeavor still encounters various challenges. Herein, a porous organic cage (POC) is applied to paclitaxel (PTX) drug delivery for cancer therapy for the first time. Specifically, water-soluble, stable, and biocompatible POC-based nanocapsules (PTX@POC@RH40) with PTX encapsulation efficiency over 98% can be synthesized by simply grafting nonionic surfactant (Polyoxyl 40 hydrogenated castor oil, RH40) on the POC surface. These PTX@POC@RH40 nanocapsules demonstrate remarkable stability for more than a week without aggregation and exhibit pH-responsive behavior under acidic conditions (pH 5.5) and display sustained release behavior at both pH 7.4 and pH 5.5. Intravenous administration of PTX@POC@RH40 led to a 3.5-fold increase in PTX bioavailability compared with the free PTX group in rats. Moreover, in vivo mouse model experiments involving 4T1 subcutaneous breast cancer tumors revealed that PTX@POC@RH40 exhibited enhanced anticancer efficacy with minimal toxicity compared with free PTX. These findings underscore the potential of POCs as promising nanocarriers for stimuli-responsive drug delivery in therapeutic applications.
Read full abstract