Abstract

Cancer therapy currently focuses on personalized targeted treatments. A promising approach uses stimuli-responsive biomaterials for site-specific drug release, such as pH- and redox-triggered polymer nanocomposites. These materials respond to the tumor microenvironment, enhance efficacy, and reduce off-target effects. Cancer cells with anomalous properties such as acidic cytosolic pH and elevated redox potential are targeted by these biomaterials. An imbalance in ions and biological thiols in the cytoplasm contributes to tumor growth. Functionalized polymer nanocomposites with large surface areas and specific targeting outperform conventional small-molecule materials. To overcome problems such as low bioavailability, uncontrolled drug release, and poor cell penetration, multifunctional nanomaterials make it easier for drugs to enter certain cellular or subcellular systems. High therapeutic efficacy is achieved through surface functionalization, site-specific targeting, and the use of stimuli-responsive components. In particular, pH and redox dual-stimuli-based polymeric nanocomposites for cancer therapeutics have scarcely been reported. This article provides recent progress in pH- and redox-responsive polymer nanocomposites for site-specific drug delivery in cancer therapy. It explores the design principles, fabrication methods, mechanisms of action, and prospects of these dual-stimuli-responsive biomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call