This paper describes an Eulerian/Lagrangian two-phase model for nucleating steam based on classical nucleation theory. The model provides an approach for including spontaneous homogeneous nucleation within a full Navier-Stokes solution scheme where the interaction between the liquid and gas phases for a pure fluid is through appropriately modeled source terms. The method allows for the straightforward inclusion of droplet heat, mass, and momentum transfer models along with nucleation within complex flow systems as found, for example, in low pressure steam turbines. The present paper describes the solution method, emphasizing that the important features of nucleating steam flow are retained through comparison with well-established 1-D solutions for Laval nozzle flows. Results for a two-dimensional cascade blade and three-dimensional low pressure turbine stage are also described.
Read full abstract