The arc torch angle greatly affected the deposition characteristics in the wire arc additive manufacturing (WAAM) process, and the relation between the droplet transition behavior and macrostructure morphology was unclear. This work researched the effect of torch angle on the formation accuracy, droplet transition behavior and the mechanical properties in the WAAM process on a ZL205A aluminum alloy. The results suggested that at the obtuse torch angle, part of the energy input was used to heat the existing molten pool, which was optimized for the longer solidification period of the molten pool. Therefore, the greater layer penetration depth at 100° resulted in the improved layer-by-layer combination ability. The obtuse torch angle was associated with the better formation accuracy on the sidewall surface due to the smaller impact on the molten pool, which was influenced by both the arc pressure and droplet impact force. The eliminated pores were optimized for the mechanical properties of depositions at a torch angle of 100°; thus, the tensile strength and elongation attained maximum values of 258.6 MPa and 17.1%, respectively. These aspects made WAAM an attractive mode for manufacturing large structural components on ZL205A aluminum alloy.