Research on simultaneous antisolvent-vapour-induced precipitation and convective drying of a solute-containing droplet was extensively conducted since this technique was introduced. However, the internal droplet compositions, which were suggested to be related to the formation of particle morphologies, had not been explored. Herein, the ethanol-vapour-induced precipitation of multi-solvent droplets containing maltodextrin as the solute was used to analyse internal droplet compositions. The droplet mass and diameter profiles were obtained via an established single-droplet drying experiment, which mimicked the spray drying of droplets. Analysis revealed that the antisolvent concentration increased with time and was higher than solvent concentration towards the end of the process. It is interesting to find out that the final particle morphology was profoundly impacted by the ambient ethanol humidity and also how spontaneous the subsequent drying was during ethanol-vapour-induced precipitation of the solutes. The formation of the porous structure was favoured with the occurrence of spontaneous vaporization once the ethanol was present for precipitation. Therefore, low ethanol humidity (20% ERH in this study) was sufficient. In contrast, higher ethanol humidity (>70% ERH) was preferable to produce spherical particles. This study provides an insight into particle engineering to unveil the internal droplet conditions and physical phenomena during this unique process.
Read full abstract