At various stages of the development of oil and gas fields, the formation experiences various stress-strain states. Changes in reservoir pressure during development lead to changes in the physical and mechanical properties of the reservoir. The properties of the host rocks are also influenced by the fluids themselves. The process of extracting formation fluid can cause not only clogging of the filtration channels with leached rock particles and precipitation of paraffins and salts, but also a decrease in the strength and elastic characteristics of the rock. The article provides a brief analysis of the works affecting the causes of changes in the physicomechanical and filtration-reservoir properties of reservoirs during drilling and development of oil fields. The technique of theoretical calculation of changes in porosity and permeability of formations is given. To establish the convergence of theoretical calculation methods with real data, tests were carried out to determine the tensile strength under uniaxial compression and filtration experiments on terrigenous samples of one of the fields in Western Siberia. In an experiment to determine the physicomechanical properties, water and kerosene in various proportions were used as saturation liquids. Based on the data obtained, the dependences of the elastic modulus and tensile strength under uniaxial compression on various types of saturation were derived, graphs and calculation formulas are presented. In the filtration experiment with volume compression, the effect of the effective pressure on the permeability of the samples was determined. The dependences of the decrease in permeability on the axial load on the sample are established. The obtained dependencies can be used in the preparation of geological and technical measures for stimulation of inflow and in the management of field development throughout the entire life cycle.
Read full abstract