Nano and micro-plastics (NMPs, particles diameter <5 mm), as emerging contaminants, have become a major concern in the aquatic environment because of their adverse consequences to aquatic life and potentially human health. Implementing mitigation strategies requires quantifying NMPs mass emissions and understanding their sources and transport pathways from land to riverine systems. Herein, to access NMPs mass input from agricultural soil to riverine system via water-driven soil erosion, we have collected soil samples from 120 cultivated land in nine drainage basins across China in 2021 and quantified the residues of six common types of plastic, including polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), polypropylene (PP), polyethylene (PE), polycarbonate (PC), and polystyrene (PS). NMPs (Σ6plastics) were detected in all samples at concentrations between 3.6 and 816.6 μg/g dry weight (median, 63.3 μg/g) by thermal desorption/pyrolysis-gas chromatography-mass spectrometry. Then, based on the Revised Universal Soil Loss Equation model, we estimated that about 22,700 tonnes of NMPs may enter the Chinese riverine system in 2020 due to agricultural water-driven soil erosion, which occurs primarily from May to September. Our result suggested that over 90% of the riverine NMPs related to agricultural soil erosion in China are attributed to 36.5% of the country's total cultivated land, mainly distributed in the Yangtze River Basin, Southwest Basin, and Pearl River Basin. The migration of NMPs due to water-driven soil erosion cannot be ignored, and erosion management strategies may contribute to alleviating plastic pollution issues in aquatic systems.
Read full abstract