Intracellular copper ion homeostasis has become an attractive target for cancer therapy. Herein, we report a 2,2'-dipicolylamine (DPA) functionalized polyglutamate derivative (PDHB) which is capable of rapidly forming PDHB-copper complex (PDHB@Cu) due to the strong coordination ability of pendant DPA with Cu2+. High drug loading content of doxorubicin (DOX) (>30 wt %) is realized due to the strong affinity of Cu2+ to DOX, while that is about 10 wt % for PDHB without Cu2+. The obtained PDHB@Cu-DOX can respond to specific endogenous stimuli (pH and glutathione (GSH)), releasing Cu2+ and DOX. The released DOX directly damages the DNA of tumor cells to cause apoptosis, while Cu2+ depletes intracellular GSH and is reduced to Cu+ simultaneously, which reacts with local H2O2 to produce highly toxic ·OH via a Fenton-like reaction, thus realizing synergistic chemodynamics and chemotherapy. This report provides an interesting polymeric ionophore strategy to deliver enough copper ions into cancer cells, which can also easily extend to other metal ions by replacing the ionophore components, thus having a wide application in nanomedicine.