Macrophage- and vascular-derived matrix metalloproteinase (MMP)-9 plays an important role in neointima formation after vascular injury. The A2b adenosine receptor (A2bAR) elevates cyclic adenosine monophosphate and suppresses tumor necrosis factor-α (TNF-α) levels at baseline and after vascular injury. Considering the influences of TNF-α on MMP-9 expression and activity, here we examined the effect of the A2bAR on the expression of MMP-9 and its potential dependency on TNF-α. We applied protein activity and mRNA analyses of MMP-9 in macrophages derived from A2bAR knockout (KO) and TNF-α receptor KO mice. We employed guidewire-induced femoral artery injuries on A2bAR KO and control mice and analyzed by immunohistochemistry MMP-9 expression in the neointima area. MMP-9 activity is somewhat less in resident A2bAR KO macrophages compared with wild-type cells. However, MMP-9 is increased in activated macrophages from A2bAR KO when TNF-α is further elevated, or in wild-type cells after TNF-α treatment. In accordance, A2bAR activation downregulates MMP-9 expression in wild-type macrophages, which is ablated in TNF-α receptor KO cells. A greater vascular lesion after femoral artery injury in A2bAR KO mice is associated with elevated TNF-α levels and augmented MMP-9, compared to control mice. Ablation of the A2bAR in activated macrophages increases MMP-9. A2bAR activation reduces MMP-9 expression, which depends on TNF-α and could contribute to the protective role of A2bAR in a vascular injury model.
Read full abstract