After re-casting the wavelet construction problem as a feasibility problem with constraints arising from the requirements of compact support, smoothness and orthogonality, the Douglas–Rachford algorithm is employed in the search for multi-dimensional, non-separable, compactly supported, smooth, orthogonal, multiresolution wavelets in the case of translations along the integer lattice and isotropic dyadic dilations. An algorithm for the numerical construction of such wavelets is described. By applying the algorithm, new one-dimensional wavelets are produced as well as genuinely non-separable two-dimensional wavelets.
Read full abstract