Abstract
Finding a zero of a sum of maximally monotone operators is a fundamental problem in modern optimization and nonsmooth analysis. Assuming that the resolvents of the operators are available, this problem can be tackled with the Douglas–Rachford algorithm. However, when dealing with three or more operators, one must work in a product space with as many factors as there are operators. In groundbreaking recent work by Ryu and by Malitsky and Tam, it was shown that the number of factors can be reduced by one. A similar reduction was achieved recently by Campoy through a clever reformulation originally proposed by Kruger. All three splitting methods guarantee weak convergence to some solution of the underlying sum problem; strong convergence holds in the presence of uniform monotonicity. In this paper, we provide a case study when the operators involved are normal cone operators of subspaces and the solution set is thus the intersection of the subspaces. Even though these operators lack strict convexity, we show that striking conclusions are available in this case: strong (instead of weak) convergence and the solution obtained is (not arbitrary but) the projection onto the intersection. To illustrate our results, we also perform numerical experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.