Abstract
ABSTRACTThis work focuses on convergence analysis of the projected gradient method for solving constrained convex minimization problems in Hilbert spaces. We show that the sequence of points generated by the method employing the Armijo line search converges weakly to a solution of the considered convex optimization problem. Weak convergence is established by assuming convexity and Gateaux differentiability of the objective function, whose Gateaux derivative is supposed to be uniformly continuous on bounded sets. Furthermore, we propose some modifications in the classical projected gradient method in order to obtain strong convergence. The new variant has the following desirable properties: the sequence of generated points is entirely contained in a ball with diameter equal to the distance between the initial point and the solution set, and the whole sequence converges strongly to the solution of the problem that lies closest to the initial iterate. Convergence analysis of both methods is presented without Lipschitz continuity assumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.