Abstract
In this work we focus on the convex feasibility problem (CFP) in Hilbert space. A specific method in this area that has gained a lot of interest in recent years is the Douglas-Rachford (DR) algorithm. This algorithm was originally introduced in 1956 for solving stationary and non-stationary heat equations. Then in 1979, Lions and Mercier adjusted and extended the algorithm with the aim of solving CFPs and even more general problems, such as finding zeros of the sum of two maximally monotone operators. Many developments which implement various concepts concerning this algorithm have occurred during the last decade. We introduce an unrestricted DR algorithm, which provides a general framework for such concepts. Using unrestricted products of a finite number of strongly nonexpansive operators, we apply this framework to provide new iterative methods, where, inter alia, such operators may be interlaced between the operators used in the scheme of our unrestricted DR algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.