Wind power output fluctuations, driven by variable wind speeds, create significant challenges for grid stability and the efficient use of wind turbines, particularly in high-wind-penetration areas. This study proposes a combined approach utilizing an ultra-capacitor energy storage system and fuzzy-control-based pitch angle adjustment to address these challenges. The fuzzy control system dynamically responds to wind speed variations, optimizing energy capture while minimizing mechanical stress on turbine components, and the ultra-capacitor provides instantaneous buffering of power surpluses and deficits. Simulations conducted on a 50 kW DFIG wind turbine powering a 23 kW load demonstrated a substantial reduction in power fluctuations by a factor of 3.747, decreasing the power fluctuation reduction scale from 13.04% to 3.48%. These results highlight the effectiveness of the proposed system in improving the stability, reliability, and quality of wind energy, thereby advancing the broader adoption of renewable energy and contributing to sustainable energy solutions.
Read full abstract