Abstract

This paper introduces a novel disturbance observer-based finite-time adaptive neural control approach to optimize wind power conversion in a doubly fed induction generator-based wind turbines (DFIG-WT). This control strategy offers appealing features including rapid finite-time convergence, both transient and steady-state performance enhancements, and robustness against external disturbances and inherent model uncertainties. The control strategy integrates the neural networks estimation capability with the interesting proprieties of the finite-time control method to achieve efficient wind power conversion. Closed-loop finite-time stability is conducted using the finite-time Lyapunov stability concept of nonlinear systems. The developed control strategy’s effectiveness is confirmed through numerical simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.