Abstract
This paper concentrates upon the problem of adaptive neural finite-time tracking control for uncertain nonstrict-feedback nonlinear systems with input saturation. The design difficulty of non-smooth input saturation nonlinearity is solved by applying a smooth non-affine function to approximate the saturation signal. Neural networks, as a kind of specialized function estimators, are used to estimate the uncertain function. Meanwhile, a neural network-based observer is constructed to observe the unavailable states, and thus an observer-based adaptive finite-time tracking control strategy is developed by combining dynamic surface control (DSC) technique and backstepping approach. Furthermore, the stability of the considered system is analyzed via semi-global practical finite-time stability theory. Under the proposed control method, all the signals in the closed-loop system are bounded, and the system output can almost surely track the desired trajectory within a specified bounded error in a finite time. In the end, two examples are adopted to illustrate the validity of our results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.