This paper introduces a novel differentiator-based maximum power point tracking (MPPT) controller for a wind energy conversion system (WECS) equipped with a doubly fed induction generator (DFIG). Building upon our previous algorithms, the proposed controller reduces the need for detailed system information and displays enhanced robustness against parameter variations and disturbances. The innovation lies in the elimination of the need for explicit functional forms or specific parameter values in the system’s dynamics, relying solely on relative degrees and control directions. Utilizing a higher-order switching differentiator (HOSD), this paper outlines a method for overestimating the time derivatives of system outputs, thereby simplifying both the controller design and stability analysis. Compared to existing solutions, the proposed method requires minimal information, offers simpler control law structures, and follows a systematic design approach with fewer design constants. Simulation results demonstrate the efficacy of the proposed controller in both tracking maximum power and regulating reactive power to zero, suggesting a more efficient and simplified approach to MPPT control in WECS.
Read full abstract