Abstract
To address the issues of the mechanical stress of doubly-fed induction generator (DFIG) and the service life of energy storage systems (ESSs) resulting from excessively and frequently participate in grid frequency regulation (GFR), this paper suggests a sequential GFR of the DFIG and ESS considering the artificial dead-bands. Firstly, the system frequency deviation expression is derived considering the dead-band to analyze the influences of the dead-bands on the grid frequency dynamics. Secondly, based on the artificial dead-bands, the GFR process is divided into three zones: the GFR zone of DFIG, the transaction zone of DFIG and ESS, and the GFR zone of ESS. To avoid the large mechanical stress of the wind turbines and shallow charging and discharging phenomenon of the ESS, the DFIG provides GFR function to mitigate the system frequency fluctuations, while ESS provides frequency regulation function to arrest the grid frequency variation taking into account the condition of state-of-charge constraints for severe frequency disturbances. Finally, simulations are conducted to verify the effectiveness of the proposed strategy under varying wind speed conditions combined with large disturbance. The results show that the proposed sequential GFR can maintain the frequency support while reducing the negative effects of mechanical fatigue of the DFIG and service life of ESS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical Power & Energy Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.