A solar pond, typical double-diffusive system, is a stable heat source that can collect and store the solar energy. When the thermal stable condition is not satisfied at the interface, the upper and lower convective zone (UCZ and LCZ) will erode the middle non-convective zone (NCZ), resulting in a drop or even a collapse of the thermal performance of solar pond. Wind strongly affects the erosion of NCZ from the entrainment of UCZ. The double-diffusion of heat and salt plays an important role in the erosion of NCZ from the entrainment of the lower-convective zone (LCZ). The turbidity of saline water in the pond not only could lower the thermal performance of solar pond, but have effect on the entrainment mechanism. In this paper, based on the double-diffusive model along with the wind-driven turbulent entrainment model, the effects of turbidity and external wind etc. on the thermal performance of solar pond and the entrainment mechanism are analyzed with the numerical simulation.