Abstract
AbstractThe discrete random walk problem for the unrestricted particle formulated in the double diffusion model given in Hill [2] is solved explicitly. In this model it is assumed that a particle moves along two distinct horizontal paths, say the upper path I and lower path 2. For i = 1, 2, when the particle is in path i, it can move at each jump in one of four possible ways, one step to the right with probability pi, one step to the left with probability qi, remains in the same position with probability ri, or exchanges paths but remains in the same horizontal position with probability si (pi + qi + ri + si = 1). Using generating functions, the probability distribution of the position of an unrestricted particle is derived. Finally some special cases are discussed to illustrate the general result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of the Australian Mathematical Society. Series B. Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.