GaAs-based dilute nitride lasers are potential light sources for future optical fiber communication systems at the wavelength of 1.3 /spl mu/m. In this paper we discuss the results of studies of optimization of the growth conditions and active regions of the GaAs-based lasers. To this end, a series of samples were grown using the molecular beam epitaxy technique. The active regions consisted of quantum wells, strain-compensating layers, and strain-mediating layers. They were characterized by photoluminescence and double crystal X-ray diffraction methods. The optical properties were very much affected by a choice of growth conditions, details of the quantum wells, and postgrowth thermal treatment. Preliminary results on diode-pumped vertical-cavity surface emitting lasers, which launch light power of 3.5 mW coupled into a single-mode fiber, are also presented.
Read full abstract