이 연구에서는 Ta 45/Ru 9.5/IrMn 10/CoFe <TEX>$3/AlO_x$</TEX>/자유층/<TEX>$AlO_x$</TEX>/CoFe 7/IrMn 10/Ru 60(nm) 구조를 갖는 이중장벽 자기터널접합(double-barrier magnetic tunnel junction: DMTJ)를 다루었다. 자유층은 <TEX>$Ni_{16}Fe_{62}Si_8B_{14}\;7nm$</TEX>, <TEX>$Co_{90}Fe_{10}(fcc)$</TEX> 7 nm 및 <TEX>$CoFet_1$</TEX>/NiFeSiB <TEX>$t_2$</TEX>/CoFe <TEX>$t_1$</TEX>으로 구성하였으며 두께 <TEX>$t_1,\;t_2$</TEX>는 변화시켰다. 즉 TMR비와 RA를 개선하기 위하여 부분적으로 CoFe층을 대체할 수 있는 비정질 NiFeSiB층이 혼합된 자유층 CoFe/NiFeSiB/CoFe을 갖는 DMTJ를 연구하였다. NiFeSiB(<TEX>$t_1=0,\;t_2=7$</TEX>)만의 자유층을 갖는 DMTJ는 터널자기저항(TMR)비 28%, 면적-저항곱(RA) <TEX>$86k{\Omega}{\mu}m^2$</TEX>, 보자력(<TEX>$H_c$</TEX>) 11 Oe 및 층간 결합장(<TEX>$H_i$</TEX>) 20 Oe를 나타내었다. <TEX>$t_1=1.5,\;t_2=4$</TEX>인 경우의 하이브리드 DMTJ는 TMR비 30%, RA <TEX>$68k{\Omega}{\mu}m^2$</TEX> 및 <TEX>$H_c\;11\;Oe$</TEX>를 가졌으나 <TEX>$H_i$</TEX>는 37 Oe로 증가하였다. 원자현미경(AFM)과 투과전자현미경(TEM)측정을 통하여 NiFeSiB층 두께가 감소하면 <TEX>$H_i$</TEX>가 증가하는 것을 확인하였다. 비정질 NiFeSiB층이 두꺼워지면 보통 계면의 기복을 유도하는 원주형성장(columnar growth)를 지연시키는데 유효하였다. 그러나 NiFeSiB층이 얇으면 표면거칠기는 증가하고 전자기적 Neel 결합 때문에 Hi는 커졌다. The typical double-barrier magnetic tunnel junction (DMTJ) structure examined in this paper consists of a Ta 45/Ru 9.5/IrMn 10/CoFe7/<TEX>$AlO_x$</TEX>/free layer/AlO/CoFe 7/IrMn 10/Ru 60 (nm). The free layer consists of an <TEX>$Ni_{16}Fe_{62}Si_8B_{14}$</TEX> 7 nm, <TEX>$Co_{90}Fe_{10}$</TEX> (fcc) 7 nm, or CoFe <TEX>$t_1$</TEX>/NiFeSiB <TEX>$t_2$</TEX>/CoFe <TEX>$t_1$</TEX> layer in which the thicknesses <TEX>$t_1$</TEX> and <TEX>$t_2$</TEX> are varied. The DMTJ with an NiFeSiB-free layer had a tunneling magnetoresistance (TMR) of 28%, an area-resistance product (RA) of <TEX>$86\;k{\Omega}{\mu}m^2$</TEX>, a coercivity (<TEX>$H_c$</TEX>) of 11 Oe, and an interlayer coupling field (<TEX>$H_i$</TEX>) of 20 Oe. To improve the TMR ratio and RA, a DMTJ comprising an amorphous NiFeSiB layer that could partially substitute for the CoFe free layer was investigated. This hybrid DMTJ had a TMR of 30%, an RA of <TEX>$68\;k{\Omega}{\mu}m^2$</TEX>, and a of 11 Oe, but an increased of 37 Oe. We confirmed by atomic force microscopy and transmission electron microscopy that increased as the thickness of NiFeSiB decreased. When the amorphous NiFeSiB layer was thick, it was effective in retarding the columnar growth which usually induces a wavy interface. However, if the NiFeSiB layer was thin, the roughness was increased and became large because of the magnetostatic <TEX>$N{\acute{e}}el$</TEX> coupling.
Read full abstract