Patient-specific ridge filters provide a passive means to modulate proton energy to obtain a conformal dose. Here we describe a new framework for optimization of filter design and spot maps to meet the unique demands of ultrahigh-dose-rate (FLASH) radiation therapy. We demonstrate an integrated physical optimization Intensity-modulated proton therapy (IMPT) (IPO-IMPT) approach for optimization of dose, dose-averaged dose rate (DADR), and dose-averaged linear energy transfer (LETd). We developed an inverse planning software to design patient-specific ridge filters that spread the Bragg peak from a fixed-energy, 250-MeV beam to a proximal beam-specific planning target volume. The software defines patient-specific ridge filter pin shapes and uses a Monte Carlo calculation engine, based on Geant4, to provide dose and LET influence matrices. Plan optimization, using matRAD, accommodates the IPO-IMPT objective function considering dose, dose rate, and LET simultaneously with minimum monitor unit constraints. The framework enables design of both regularly spaced and sparse-optimized ridge filters, from which some pins are omitted to allow faster delivery and selective LET optimization. To demonstrate the framework, we designed ridge filters for 3 example patients with lung cancer and optimized the plans using IPO-IMPT. The IPO-IMPT framework selectively spared the organs at risk by reducing LET and increasing dose rate, relative to IMPT planning. Sparse-optimized ridge filters were superior to regularly spaced ridge filters in dose rate. Depending on which parameter is prioritized, volume distributions and histograms for dose, DADR, and LETd, using evaluation structures specific to heart, lung, and esophagus, show high levels of FLASH dose-rate coverage and/or reduced LETd, while maintaining dose coverage within the beam specific planning target volume. This proof-of-concept study demonstrates the feasibility of using an IPO-IMPT framework to accomplish proton FLASH stereotactic body proton therapy, accounting for dose, DADR, and LETd simultaneously.
Read full abstract