Abstract
Atomic kinetic Monte Carlo simulations were used to model void superlattice formation under irradiation in molybdenum, driven by anisotropic diffusion of self-interstitial atoms. A change in the phase transformation mechanism from nucleation and growth to spinodal decomposition occurred with increasing dose rate, with both mechanisms leading to superlattice formation. Analysis of a rate-theory based analytical model showed that an observed change in the kinetics of vacancy accumulation, the appearance of a region of positive second derivative in the plot of average vacancy concentration versus time, was caused by the onset of spinodal instability. The analytical model showed that for molybdenum and several other metals where void superlattice formation is commonly observed, the phase transformation likely occurs by nucleation and growth. However, nickel may offer the possibility of experimental observation of the transition between phase transformation mechanisms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have