The present study explored visually induced vertical vergence (VIVV) as non-specific motion processing response. Healthy participants (7 male, mean age 28.57 ± 2.30; 9 female, mean age 27.67 ± 3.65) were exposed to optokinetic stimuli in an HTC VIVE virtual reality headset while VIVV, pupil-size, and postural sway was recorded. The methodology was shown to produce VIVV in the roll plane at 30 deg/s. Subsequent trials consisted of 40 s optokinetic motion in yaw, pitch, and roll directions at 60 deg/s, and radial optic flow; optokinetic directions were inverted after 20 s of motion. Median VIVV amplitude changes were normalized to the clockwise roll rotation, analysed, and correlated with changes in pupil-size and body sway. VIVV, pupil-size, and body sway were all affected by changes in optokinetic direction. Post-hoc analyses showed significant VIVV responses during optokinetic yaw and pitch rotations, as well as during radial optic flow stimulations. VIVV magnitudes were universally correlated with pupil-size and body sway. In conclusion, VIVV was expressed in all tested dimensions and may consequently serve as a visual motion processing biomarker. Failing to support binocularity while responding to optokinetic directionality, VIVV may reflect an eye-movement response associated with increased postural instability and stress, similar to a dorsal light reflex.