Abstract

Under photopic illumination conditions, motion detection in goldfish is dominated by the long-wavelength-sensitive cone type (L-cone), and under scotopic conditions motion it is determined by rods (Schaerer & Neumeyer, 1996). The switch from rod-dominated to cone-dominated motion detection occurs during light adaptation. It has been suggested that dopamine acts as a neuronal light-adaptative signal. It is known that dopamine affects wavelength discrimination through D1-dopamine receptors (Mora-Ferrer & Neumeyer, 1996), and the dorsal light reflex through D1- and D2-dopamine receptors (Lin & Yazulla, 1994a). The purpose of this study was to determine whether dopamine influenced movement detection by goldfish, and if so, which dopamine receptor was involved. The D2-dopamine receptor antagonist sulpiride reduced the animal's sensitivity to the moving stimulus, whereas SCH 23390, a D1-dopamine receptor antagonist, did not have any effect. The effect of sulpiride is discussed in relation to known sulpiride effects on retinal neurons and the retinal pigment epithelium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.