Effects of dark incubation at different temperatures were studied on dormancy and respiratory activity of seeds of Sisymbrium officinale (L.) Scop. Because germination of this species absolutely depends on the simultaneous action of light and nitrate, changes in dormancy could be studied in darkness without the interference of early germination events. Upon the start of incubation rates of O2 uptake and CO2 release rose. This was followed by a gradual decrease until stable levels of O2 uptake and CO2 release were achieved. Seeds kept for prolonged periods at 24°C, showed neither a change in germination capacity nor in rates of O2 uptake and CO2 release. Respiratory quotients were 0.55–0.7. The initial rise in O2 uptake correlated with the rate of water uptake and with breaking of primary dormancy. However, the subsequent decline in O2 uptake was not generally linked to induction of secondary dormancy. An increased O2 uptake was not required during breaking of secondary dormancy. It is concluded that changes in dormancy are not generally related to changes in respiratory activity. However, germination strongly depends on respiration. The increase in O2 uptake started well before radicle protrusion. A far red irradiation only reversed this increase when it was given before germination escaped from its red light antagonising action. The contribution of different respiratory pathways was followed during prolonged incubation at 24°C in darkness. KCN at 1.5 mM was needed to inhibit the cytochrome pathway (CP) and benzohydroxamic acid (BHAM) at 30 mM to inhibit the alternative pathway (AP). These concentrations did not exert any side effects. Electron flow was predominantly via the CP, maximally 10% was via the AP. Flow through the CP declined during the first 6 days and residual respiration remained constant. Therefore, the contribution of residual respiration became relatively more important with prolonged incubation. KCN at concentrations that almost completely inhibited flow through the CP, did not dramatically reduce germination. BHAM already inhibited germination at concentrations that do not inhibit oxygen uptake.