Parkinson's disease (PD) is an age-related movement disorder caused by the loss of dopaminergic (DA) neurons of the substantia nigra pars compacta (SNpc) of the midbrain, however, the underlying cause(s) of this DA neuron loss in PD is unknown and there are currently no effective treatment options to prevent or slow neuronal loss or the progression of related symptoms. It has been shown that both environmental factors as well as genetic predispositions underpin PD development and recent research has revealed that lysosomal dysfunction and lipid accumulation are contributors to disease progression, where an age-related aggregation of alpha-synuclein as well as lipids have been found in PD patients. Interestingly, the most common genetic risk factor for PD is Glucosylceramidase Beta 1 (GBA), which encodes a lysosomal glucocerebrosidase (GCase) that cleaves the beta-glucosidic linkage of lipids known as glucocerebrosides (GluCer). We have recently discovered that artificial induction of GluCer accumulation leads to cellular senescence of DA neurons, suggesting that lipid aggregation plays a crucial role in the pathology of PD by driving senescence in these vulnerable DA neurons. Here, we discuss the relevance of the age-related aggregation of lipids as well as the direct functional link between general lipid aggregation, cellular senescence, and inflammaging of DA neurons. We propose that the expression of a cellular senescence phenotype in the most vulnerable neurons in PD can be triggered by lysosomal impairment and lipid aggregation. Importantly, we highlight additional data that perilipin (PLIN2) is significantly upregulated in senescent DA neurons, suggesting an overall enrichment of lipid droplets (LDs) in these cells. These findings align with our previous results in dopaminergic neurons in highlighting a central role for lipid accumulation in the senescence of DA neurons. Importantly, general lipid droplet aggregation and global lysosomal impairment have been implicated in many neurodegenerative diseases including PD. Taken together, our data suggest a connection between age-related lysosomal impairment, lipid accumulation, and cellular senescence in DA neurons that in turn drives inflammaging in the midbrain and ultimately leads to neurodegeneration and PD.