Abstract

Pterostilbene (PTE), a naturally occurring phenolic compound primarily found in blueberries, demonstrates neuroprotective properties. However, the role of PTE in Parkinson's disease (PD) remains unclear. This study aimed to investigate the neuroprotective role of PTE in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD animal model. Our findings demonstrate that administering PTE effectively reversed the diminished levels of dopamine in the striatum, thereby ameliorating motor impairments in the MPTP model. Moreover, PTE administration mitigated the loss of dopaminergic (DA) neurons and reduced the upregulation of α-synuclein (α-syn) induced by MPTP. Mechanistic analysis revealed that PTE administration inhibited the activation of microglia and astrocytes, as well as pro-inflammatory factors such as TNF-α and IL-1β in the MPTP model. Additionally, PTE administration decreased MPTP-induced levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while increasing total antioxidant capacity (TAOC) and superoxide dismutase (SOD) activity, thereby attenuating oxidative stress. Collectively, these findings demonstrate that PTE exerts neuroprotective effects in the MPTP mouse model of PD by suppressing neuroinflammation and oxidative stress. Thus, PTE holds promise as a therapeutic agent for PD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call