In dystrophic retinas of rds mice, which are devoid of photoreceptor outer segments, high steady state levels of dopamine were found in dark and light periods. These levels were similar to those observed in normal, BALB/c mouse retinas. Major differences were determined, however, between dopamine turnover in normal and dystrophic retinas. While substantial light-evoked elevation of dopamine synthesis and utilization was observed in normal retinas, dopamine synthesis and metabolism in rds retinas was very low and response to light was depressed. Retinal dopamine metabolism was already depressed in 2 week old rds mice, prior to the onset of photoreceptor cell death, relative to that in age-matched BALB/c mice. At 1 month of age, robust light/dark differences in retinal dopamine metabolism were observed in BALB/c mice, while no significant effect of light was seen in rds mice. The limited ability of the dopaminergic system in rds retinas to respond to light may be due to the absence of normal outer segments. Interestingly, in old rds retinas, although most photoreceptor cells had degenerated, a small but significant light-evoked increase in dopamine metabolism was measured. The presence of relatively high steady state levels of dopamine in rds retinas, despite the reduced dopamine synthetic activity, is maintained by a compensatory reduction in dopamine utilization. Thus, although a considerable amount of dopamine is present in the rds retina, it might not be available to exert its biological functions.
Read full abstract