Abstract
Recent anatomical data suggest that the nucleus accumbens can be parcellated into a core region, related to the caudate-putamen, and a shell region, associated with the limbic system. We have used pharmacological methods to characterize the dopamine innervations of the nucleus accumbens core and shell in the rat. Concentrations of both dopamine and serotonin were significantly greater in the nucleus accumbens shell than the nucleus accumbens core. Metabolite: amine ratios suggested that both dopamine and serotonin utilization are greater in the core. However, dopamine turnover (as determined by measuring the rate of decline of dopamine after α-methyl- p-tyrosine treatment) was not significantly different in the two accumbal sectors. Dopamine concentrations in the two nucleus accumbens sectors were decreased to an equivalent degree at both 4 and 18 h after reserpine administration. In contrast, serotonin concentrations were decreased to a significantly greater degree in the nucleus accumbens core than nucleus accumbens shell at 4 h, but not 18 h, after reserpine administration. Administration of haloperidol increased dopamine utilization in both nucleus accumbens sectors, but augmented utilization to a significantly greater degree in the nucleus accumbens core. Clozapine increased dopamine utilization to an equivalent degree in both nucleus accumbens regions. Short duration immobilization stress selectively increased dopamine utilization in the nucleus accumbens shell. These data indicate that there are significant differences between the nucleus accumbens core and nucleus accumbens shell in basal dopamine metabolism, and indicate that the core and shell dopamine innervations can be distinguished on the basis of response to both pharmacological and environmental challenges. These data are consistent with the hypothesis that the dopaminergic innervation of the nucleus accumbens core is associated with the nigrostriatal system, while that of the nucleus accumbens shell is related to the mesolimbic system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.