Somatic cell nuclear transfer (SCNT) involves functional changes in the genome which result in low efficiency for the production of viable and cloned embryos. It is primarily due to incomplete reprogramming of genome of donor cell nuclei in the reconstructed embryos (Vassena et al. 2007 Dev. Biol. 304, 75–89). Expression of BCL2 and Bax can be correlated with apoptosis. BCL2 inhibits apoptosis by regulating the release of cytochrome-c and other proteins from mitochondria (Keep et al. 2007 EMBO J. 26, 825–834). Antiapoptotic BCL2 is antiproliferative by facilitating G0. Bax is proapoptotic and accelerates S-phase progression. The dual functions in apoptosis and cell cycle are coordinately regulated by the BCL2 family and suggest that survival is maintained at the expense of proliferation (Zinkel et al. 2006 Cell Death Differ. 13, 1351–1359). The aim of this study was to estimate the relative expression of BCL2 oncogene and Bax gene in regulating apoptosis, in skin fibroblast, cumulus, and granulosa cells in culture, so that ideal-type donor cell lines are developed for higher success rates in SCNT-derived buffalo cloning. The cell lines up to 25th passage were from all the 3 tissue types by previous method (Gupta et al. 2007 Cell Biol. Int. 31, 1257–1264). The cells between passages 5th to 15th were selected as competent donor cells and transferred into enucleated in vitro-matured oocytes from slaughter ovaries. The couplets were activated electrically (1.5 kV cm–2, 15 μs) and chemically (ionomycin, 6-DMAP, CHX, and Cyto-B) and were cultured up to blastocyst. The cDNA were prepared from the growing cells in culture at 5, 10, and 15 passages from all cell lines and SCNT-cloned blastocysts from these cell lines at respective passages for Bax and BCL2 gene expression analysis. Relative expression of these candidate genes was quantified using real-time PCR. The data was analyzed for 1-way ANOVA and post-hoc Duncan multiple range test at P ≤ 0.05 level of significance. The cell proliferation rate in cultured cells at fifth passage was higher in all the 3 cell lines and declined in subsequent passages (range from 1.06 to 0.67). The relative abundance of Bax mRNA in granulosa cell was comparable with skin fibroblasts but significanly higher than cumulus cells at respective passages. BCL2 mRNA expression was significantly upregulated in cumulus cells as compared to granulosa cells but not with skin fibroblasts. The SCNT blastocyst production rates from granulosa were highest (24.28%) as compared to fibroblast (22.6%) and cumulus (21.4%) at passage 10. Level of Bax and BCL2 mRNA in granulosa and fibroblast SCNT blastocysts was not significantly different from IVF (control), whereas cumulus-derived blastocyst showed abnormal patterns with downregulated expression of Bax mRNA and upregulated expression of BCl2 mRNA. Identification of expressed genes in cells and cloned embryos will help to investigate the causes of developmental abnormality due to deregulation of expression of important gene associated with ART.