Bearings are one of the most important parts of a rotating machine. Bearing failure can lead to mechanical failure, financial loss, and even personal injury. In recent years, various deep learning techniques have been used to diagnose bearing faults in rotating machines. However, deep learning technology has a data imbalance problem because it requires huge amounts of data. To solve this problem, we used data augmentation techniques. In addition, Convolutional Neural Network, one of the deep learning models, is a method capable of performing feature learning without prior knowledge. However, since conventional fault diagnosis based on CNN can only extract single‐scale features, not only useful information may be lost but also domain shift problems may occur. In this paper, we proposed a Multiscale Convolutional Neural Network (MSCNN) to extract more powerful and differentiated features from raw signals. MSCNN can learn more powerful feature expression than conventional CNN through multiscale convolution operation and reduce the number of parameters and training time. The proposed model proved better results and validated the effectiveness of the model compared to 2D‐CNN and 1D‐CNN.