The dynamics of the Peyrard-Bishop model for vibrational motion of DNA dynamics, which has been extended by taking into account the rotational motion for the nucleotides (Silva et al., J. Biol. Phys. 34, 511–519, 2018) is studied. We report on the presence of the modulational instability (MI) of a plane wave for charge migration in DNA and the generation of soliton-like excitations in DNA nucleotides. We show that the original differential-difference equation for the DNA dynamics can be reduced in the continuum approximation to a set of three coupled nonlinear equations. The linear stability analysis of continuous wave solutions of the coupled systems is performed and the growth rate of instability is found numerically. Numerical simulations show the validity of the analytical approach with the generation of wave packets provided that the wave numbers fall in the instability domain.
Read full abstract