Abstract
The hot deformation behavior of Al–Cu–Li alloy was investigated by hot compression tests in the temperature range of 340–500 °C with strain rate of 0.001–10.000 s−1. Based on the dynamic materials model (DMM), processing maps of the test alloy were developed for optimizing hot processing parameters. The optimum parameters of hot deformation for Al–Cu–Li alloy are at temperature of 400–430 °C and strain rate of about 0.100 s−1, with efficiency of power dissipation of around 30%. The microstructural manifestation of the alloy deformed in instability domains is flow localization, and dynamic softening first occurs in flow localizations structure. In stable domains, dynamic recovery (DRV) and dynamic recrystallization (DRX) are the main microstructural evolution mechanism. DRX is gradually strengthened with the increase in deformation temperature and the decrease in strain rate. During hot deformation, the DRX mechanism of Al–Cu–Li alloy is dominated by continuous DRX (CDRX). A DRX model of Al–Cu–Li alloy is proposed based on the microstructural evolution process of the test alloy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.