The crucial function of circulating microbial DNA (cmDNA) in peripheral blood is gaining recognition because of its importance in normal physiology and immunity in healthy individuals. Evidence suggests that cmDNA in peripheral blood is derived from highly abundant, translocating gut microbes. However, the associations with and differences between cmDNA in peripheral blood and the gut microbiome remain unclear. We collected blood, urine, and fecal samples from volunteers to compare their microbial information via 16S rDNA sequencing. The results revealed that, compared with gut microbial DNA, cmDNA in peripheral blood was associated with reduced diversity and a distinct microbiota composition. The cmDNA in the blood reflects the biochemical processes of microorganisms, including synthesis, energy conversion, degradation, and adaptability, surpassing that of fecal samples. Interestingly, cmDNA in blood showed a limited presence of DNA from anaerobes and gram-positive bacteria, which contrast with the trend observed in fecal samples. Furthermore, analysis of cmDNA revealed traits associated with mobile elements and potential pathologies, among others, which were minimal in stool samples. Notably, cmDNA analysis indicated similarities between the microbial functions and phenotypes in blood and urine samples, although greater diversity was observed in urine samples. Source Tracker analysis suggests that gut microbes might not be the main source of blood cmDNA, or a selective mechanism allows only certain microbial DNA into the bloodstream. In conclusion, our study highlights the composition and potential functions associated with cmDNA in peripheral blood, emphasizing its selective presence; however, further research is required to elucidate the mechanisms involved.IMPORTANCEOur research provides novel insights into the unique characteristics and potential functional implications of circulating microbial DNA (cmDNA) in peripheral blood. Unlike other studies that analyzed sequencing data from fecal or blood microbiota in different study cohorts, our comparative analysis of cmDNA from blood, urine, and fecal samples from the same group of volunteers revealed a distinct blood-specific cmDNA composition. We discovered a decreased diversity of microbial DNA in blood samples compared to fecal samples as well as an increased presence of biochemical processes microbial DNA in blood. Notably, we add to the existing knowledge by documenting a reduced abundance of anaerobes and gram-positive bacteria in blood compared to fecal samples according to the analysis of cmDNA and gut microbial DNA, respectively. This observation suggested that a potential selective barrier or screening mechanism might filter microbial DNA molecules, indicating potential selectivity in the translocation process which contrasts with the traditional view that cmDNA primarily originates from random translocation from the gut and other regions. By highlighting these differences, our findings prompt a reconsideration of the origin and role of cmDNA in blood circulation and suggest that selective processes involving more complex biological mechanisms may be involved.
Read full abstract