Archaeal family-B DNA polymerases bind tightly to uracil and hypoxanthine (the deamination products of cytosine and adenine), resulting in profound inhibition of DNA replication. Investigation of the mechanism of inhibition, using single-turnover kinetics with polymerase in excess of DNA, indicated that deoxy-NTPs were efficiently bound to the polymerase–DNA complex but very poorly incorporated into the extending chain. Addition of the processivity factor proliferating cell nuclear antigen (PCNA) resulted in increased affinity of the polymerase for all primer–templates, producing extremely tight complexes when uracil ( K d = 16 pM) or hypoxanthine ( K d = 65 pM) was present. Analytical ultracentrifugation confirmed the stability of these complexes and revealed a polymerase/PCNA/DNA stoichiometry of 1:1:1. However, PCNA had no influence on the ability of the polymerase to read through uracil and hypoxanthine, the same kinetic parameters being observed with or without the processivity factor. The specificity constants determined using single-turnover kinetics showed that uracil and hypoxanthine slowed the polymerase by factors of ∼ 5000 and 3000, respectively. Uracil and hypoxanthine are removed from DNA by base excision repair, initiated by uracil-DNA glycosylase and endonuclease V, respectively. Both enzymes are profoundly inhibited by the simultaneous binding of both PCNA and polymerase to primer–templates, with polymerase alone being much less effective. Thus, when the PCNA–polymerase complex encounters uracil/hypoxanthine in DNA templates, base excision repair is switched off, protecting the complex from a repair pathway that is dangerous in the context of single-stranded DNA formed during replication.
Read full abstract