Abstract
Replication of the human cytomegalovirus genome takes place in the nuclei of infected cells and is mediated by a viral-encoded DNA polymerase complex formed by the catalytic subunit pUL54 and the processivity factor ppUL44. Although it has recently been shown that the dimerization ability of recombinant pUL44 appears to be crucial for effective DNA binding in vitro, whether ppUL44 can dimerize or not in a cellular context is unknown. Here, we show, by using co-immunoprecipitation and dual-color live imaging approaches on cells expressing fluorescent and differently tagged ppUL44 fusion proteins, that ppUL44 dimerizes in the cytoplasm via its N-terminal domain, before translocating to the nucleus. Furthermore, we show that nuclear translocation of differently tagged ppUL44 heterodimers can occur even when one subunit carries a nonfunctional nuclear localization signal. Importantly, the latter cotransfection assay represents a system to test small-molecule inhibitors for their ability to impair ppUL44 dimerization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.