Contraction-level invariant surface electromyography pattern recognition introduces the decrease of training time and decreases the limitation of clinical prostheses. This study intended to examine whether a signal pre-processing method named frequency division technique (FDT) for online myoelectric pattern recognition classification is robust against contraction-level variation, and whether this pre-processing method has an advantage over traditional time-domain pattern recognition techniques even in the absence of muscle contraction-level variation. Eight healthy and naïve subjects performed wrist contractions during two degrees of freedom goal-oriented tasks, divided in three groups of type I, type II, and type III. The performance of these tasks, when the two different methods were used, was quantified by completion rate, completion time, throughput, efficiency, and overshoot. The traditional and the FDT method were compared in four runs, using combinations of normal or high muscle contraction level, and the traditional method or FDT. The results indicated that FDT had an advantage over traditional methods in the tested real-time myoelectric control tasks. FDT had a much better median completion rate of tasks (95%) compared to the traditional method (77.5%) among non-perfect runs, and the variability in FDT was strikingly smaller than the traditional method (p < 0.001). Moreover, the FDT method outperformed the traditional method in case of contraction-level variation between the training and online control phases (p = 0. 005 for throughput in type I tasks with normal contraction level, p = 0.006 for throughput in type II tasks, and p = 0.001 for efficiency with normal contraction level of all task types). This study shows that FDT provides advantages in online myoelectric control as it introduces robustness over contraction-level variations.
Read full abstract